Sửa `|5-2x|=|4-2x|->|5-2x|+|4-2x|`
Áp dụng tính chất `|P|>=P,|P|>=-P`
`=>{(|5-2x|>=5-2x),(|4-2x|>=2x-4):}`
`=>|5-2x|+|4-2x|>=5-2x+2x-4=1`
Dấu "=' xảy ra khi `{(5-2x>=0),(4-2x<=0):}`
`<=>{(2x<=5),(2x>=4):}`
`<=>2<=x<=5/2`
Sửa `|5-2x|=|4-2x|->|5-2x|+|4-2x|`
Áp dụng tính chất `|P|>=P,|P|>=-P`
`=>{(|5-2x|>=5-2x),(|4-2x|>=2x-4):}`
`=>|5-2x|+|4-2x|>=5-2x+2x-4=1`
Dấu "=' xảy ra khi `{(5-2x>=0),(4-2x<=0):}`
`<=>{(2x<=5),(2x>=4):}`
`<=>2<=x<=5/2`
Hàm số y = f(x) được cho bởi các công thức sau. Tìm giá trị của x để vế phải của công thức có nghĩa.
a) y = \(\dfrac{2x}{\left|x\right|-2}\)
b) y = |x| + |x - 1|
c) y = \(\dfrac{2x}{1-x}-\dfrac{1}{2x+1}\)
Cho hàm số \(y=f\left(x\right)=5-2x\)
a) Tính \(f\left(-2\right),f\left(-1\right),f\left(0\right),f\left(3\right)\)
b) Tính các giá trị của \(x\) tương ứng với \(y=5;3;-1\)
Hàm số \(y=f\left(x\right)\) được xác định bởi tập hợp :
\(\left\{\left(-3;6\right);\left(-2;4\right);\left(0;0\right);\left(1;-2\right);\left(3;-6\right)\right\}\)
Lập bảng các giá trị tương ứng \(x\) và \(y\) của hàm số trên ?
Hàm số \(y=f\left(x\right)\) được cho bởi công thức \(f\left(x\right)=2x^2-5\)
Hãy tính : \(f\left(1\right);f\left(-2\right);f\left(0\right);f\left(2\right)\) ?
Cho hàm số \(y=f\left(x\right)=ax\left(a\ne0\right)\) xác định với mọi \(x\in Q\)
Tìm giá rị của a để \(f\left(x_1\right)\cdot f\left(x_2\right)=f\left(x_1\cdot x_2\right)\)
Giúp mình với :3
Hàm số \(y=f\left(x\right)\) được cho bởi công thức \(y=3x^2-7\)
a) Tìm giá trị của x tương ứng với các giá trị của y lần lượt bằng: \(-4;5;-6\dfrac{2}{3}\)
Helpppppppppppppppppppp
tìm x:
(1)
a) \(x+\dfrac{2}{3}=\dfrac{-1}{12}\)
b)\(\left(2x+1\right)^2=9\)
(2) cho hàm số y=f(x)=2x2+4. Tính f(2);f(-1)
Cho hàm số: \(y=f\left(x\right)=3x^2+2\) và \(y=g\left(x\right)=2x+6\)
Với giá trị nào của x thì \(f\left(x\right)=g\left(x\right)\)?
Cho hàm số \(y=f\left(x\right)=2-2x^2\)
Hãy khoanh tròn chữ cái đứng trước khẳng định đúng ?
(A) \(f\left(\dfrac{1}{2}\right)=0\) (B) \(f\left(-\dfrac{1}{2}\right)=4\) (C) \(f\left(\dfrac{1}{2}\right)=3\) (D) \(f\left(-\dfrac{1}{2}\right)=\dfrac{5}{2}\)