\(A=\left|x-2001\right|+\left|x-1\right|\)
\(=\left|2001-x\right|+\left|x-1\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|2001-x\right|+\left|x-1\right|\ge\) \(\left|2001-x+x-1\right|\)
\(\Rightarrow A\ge\left|2001-1\right|=\left|2000\right|=2000\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}2001-x\ge0\\x-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2001\\x\ge1\end{matrix}\right.\)
\(\Leftrightarrow1\le x\le2001\)
Vậy \(MIN_A=2000\) tại \(1\le x\le2001\)