P = x2 + 2y2 - 2xy + 4y + 6
...= (x2 - 2xy + y2) + (y2 + 4y + 4) + 2
...= (x - y)2 + (y + 2)2 + 2 \(\geq 2\) , \(\forall\) x
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-y=0\\y+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\)
Vậy MIN P = 2 <=> x = - 2 ; y = -2