Lời giải:
Ta có:
\(A=x-4\sqrt{x-1}+2020=(x-1)-4\sqrt{x-1}+4+2017\)
\(=(\sqrt{x-1}-2)^2+2017\)
Vì \((\sqrt{x-1}-2)^2\geq 0, \forall x\geq 1\), do đó :
\(A\geq 0+2017=2017\). Dấu "=" xảy ra khi \(\sqrt{x-1}-2=0\Leftrightarrow x=5\)
Vậy \(A_{\min}=2017\Leftrightarrow x=5\)