\(L=\dfrac{x-1+1}{\sqrt{x}-1}=\sqrt{x}+1+\dfrac{1}{\sqrt{x}-1}=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\)
=>\(L>=2\sqrt{\left(\sqrt{x}-1\right)\cdot\dfrac{1}{\sqrt{x}-1}}+2=4\)
Dấu = xảy ra khi (căn x-1)^2=1
=>căn x-1=1 hoặc căn x-1=-1
=>x=0 hoặc x=4
\(L=\dfrac{x-1+1}{\sqrt{x}-1}=\sqrt{x}+1+\dfrac{1}{\sqrt{x}-1}=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\)
=>\(L>=2\sqrt{\left(\sqrt{x}-1\right)\cdot\dfrac{1}{\sqrt{x}-1}}+2=4\)
Dấu = xảy ra khi (căn x-1)^2=1
=>căn x-1=1 hoặc căn x-1=-1
=>x=0 hoặc x=4
cho số thực x thỏa mãn 1/2<=x<= căn(5)/2 . tìm giá trị lớn nhất của biểu thức A = 3.căn(2x-1)+x.căn(5-4x^2)
A= x+1- (2x-2 căn x)/(căn x-1) + (x căn x+1)/ (x- căn x +1) rut gọn, tìm giá trị nhỏ nhất của A
Cho biểu thức A = x - 2\(\sqrt{x+2}\)
a) Đặt y = \(\sqrt{x+2}\). Hãy biểu thị A theo y.
b) Tìm giá trị nhỏ nhất của A.
A = \(\dfrac{3\sqrt{x}}{\sqrt{x}-6}\) với đkxđ : \(x\ge0\); x#1;x#36
B =\(\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}\) với đkxđ : \(x\ge0\); x#1;x#36
Đặt T = \(\sqrt{AB}\). Tìm giá trị nhỏ nhất của biểu thức T
với giá trị nào của x thì biểu thức có nghĩa:
f) căn bậc tất cả 2x-1/2-x
g) căn bậc x-3/ căn bậc 5-x h
h) căn bậc x-1.căn bậc x+5
Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức:
a) A= căn 4x2-16x+20
b) B= căn x2+2x+10 cộng căn 2x2+4x+3
với x 0 và x ≠ 9 thì giá trị biểu thức a = (x-3 căn x) / (căn x -3)
Cho biểu thức M = x^2- căn 2/x^4+(căn 3 - căn 2)*x^2- căn 6 . Rút gọn rồi tìm giá trị của x để M có giá trị lớn nhất, tìm giá trị lớn nhất \