Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-1\right|+\left|x-2017\right|=\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|=\left|-2016\right|=2016\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-1\ge0\\2017-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\le2017\end{matrix}\right.\)
Vậy \(MIN_A=2016\) khi \(1\le x\le2017\)