Cho biểu thức P=[(8x+12)/(x–2016)]*[x(x–2)/(x^2+4)]–[(8x+12)/(x^2+4)]/{(x–2016)/[x(x-3)+2016]}
a) rút gọn P
b) tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P
trong hệ trục tọa độ Oxy, cho 2 điểm A(0, 1) và B(3, 4). Điểm M (a, b) thuộc đường thẳng (d) x-2y-2=0 thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) đạt giá trị nhỏ nhất, Khi đó a+b bằng
cho biểu thức f(x,y)= \(x^2+2y^2-2xy+2mx+2y+25\) ( m là tham số). Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m để f(x,y) \(\ge\) 0 với x, y thuộc R. tính tổng tất cả các phần tử của S
1 Chứng tỏ 10^2016 chia hết cho 9
2 Tìm giá trị nhỏ nhất của biểu thức
A=|x-2016|+|x-2017| với x thuộc z
Tập hợp các giá trị nguyên để biểu thức đạt giá trị nhỏ nhất là { }
(Nhập kết quả theo giá trị tăng dần, ngăn cách nhau bởi dấu ";")
Cho f(x) = x−x2x−x2 . Kết luận nào sau đây là đúng ?
A. f(x) có giá trị nhỏ nhất bằng 1414
B. f(x) có giá trị lơn nhất bằng 1212
C. f(x) có giá trị nhỏ nhất bằng -1414
D. f(x) có giá trị lớn nhất bằng 14
cho hai số thực x,y thỏa mãn 2x+3y\(\le7\). Giá trị lớn nhất của biểu thức P=x+y+xy là
tính gtri của biểu thức sau:
A=(x^2-y) (x^2+2y) (x^2-2y^2) (x^8+2y^4)
Tìm giá trị nhỏ nhất của biểu thức:
\(\frac{6}{\left|x\right|-3}\)