Ta có:
\(A=\left|x-2010\right|+\left|x+10\right|\)
\(A=\left|x-2010\right|+\left|-x-10\right|\)
Xét \(\left|x-2010\right|+\left|-x-10\right|\ge\left|x-2010-x-10\right|\)
\(\Rightarrow A\ge\left|-2020\right|\)
\(\Rightarrow A\ge2020\)
Dấu " = " xảy ra khi \(\left(x-2020\right)\left(-x-10\right)\ge0\)
\(\Rightarrow\) \(2020\ge x\ge-10\)
Vậy MinA = 2020 \(\Leftrightarrow\)2020 \(\ge\) x \(\ge\)-10