Lời giải:
Tìm min:
$y=(2\sin x-1)^2+2\geq 2$
$\Rightarrow y_{\min}=2$. Dấu "=" xảy ra khi $\sin x=\frac{1}{2}$
Tìm max:
$y=4\sin ^2x-4\sin x+3=4\sin x(\sin x+1)-8(\sin x+1)+11$
$=(\sin x+1)(4\sin x-8)+11$
$=2(\sin x+1)(\sin x-2)+11$
Vì $\sin x\in [-1;1]$ nên $2(\sin x+1)(\sin x-2)\leq 0$
$\Rightarrow y\leq 11$ hay $y_{\max}=11$