\(\text{Đặt }A=\left(2x+1\right)^2-\left(3x-1\right)^2\\ =\left(2x+1-3x+1\right)\left(2x+1+3x-1\right)\\ =\left(-x+2\right)\cdot5x\\ =-5x^2+2\)
\(x^2\ge0\forall x\\ \Rightarrow5x^2\ge0\forall x\\ \Rightarrow-5x^2\le0\forall x\\ \Rightarrow-5x^2+2\le2\forall x\)
Dấu "=" xảy ra khi\(-5x^2=0\Rightarrow x^2=0\Rightarrow x=0\)
Vậy \(Max_A=2\) khi \(x=0\)