\(P=\left(\sqrt{a}+\sqrt{b}\right)\cdot\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}\)
=a-b
=8căn 5-căn 5
=7 căn 5
\(P=\left(\sqrt{a}+\sqrt{b}\right)\cdot\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}\)
=a-b
=8căn 5-căn 5
=7 căn 5
\(\left[\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right]:\left[\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right]\)
Rút Gọn Giúp
cho biểu thức A=\([\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}.\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a)Tìm điều kiện xác định
b)Rút gọn A
c)Biết xy=16 tìm các giá trị của x,y để A có giá trị nhỏ nhất, tìm giá trị đó.
Cho biểu thức A=\(\left(\frac{1}{\sqrt{x}+2}+\frac{7}{x-4}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-2}-1\right)\)
a)Rút gọn biểu thức A
b)Tính giá trị của biểu thức A khi \(x=\sqrt{\frac{2}{2-\sqrt{3}}}-\sqrt{\frac{2}{2+\sqrt{3}}}\)
Tìm tập xác định của các hàm số :
a. \(y=\dfrac{2}{x+1}+\sqrt{x+3}\)
b. \(y=\sqrt{2-3x}-\dfrac{1}{\sqrt{1-2x}}\)
c. \(y=\left\{{}\begin{matrix}\dfrac{1}{x+3};\left(x\ge1\right)\\\sqrt{2-x};\left(x< 1\right)\end{matrix}\right.\)
Tìm tập xác định của hàm số :
a. y=\(\dfrac{1}{x^2-2x}+\sqrt{x^2-1}\)
b.y=\(\sqrt{x+1}+\sqrt{5-3x}\)
c.y=\(\sqrt{5x+3}+\dfrac{2x}{\sqrt{3-x}}\)
d.y=\(\dfrac{3x}{\sqrt{4-x^2}}+\sqrt{1+x}\)
e.y=\(\dfrac{5-2x}{(2-3x)\sqrt{1-6x}}\)
a) \(\left(x^2-5x+6\right)\left(\sqrt{x+5}+4\right)=3x^3-10x^2-7x+30\)
b) \(\sqrt{x^2+x+2}+\sqrt{x^2-x+2}=2x+1\)
c) \(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
Tìm tập xác định của các hàm số sau :
1 ) \(y=\dfrac{3x-2}{x^2-4x+3}\)
2 ) \(y=2\sqrt{5-4x}\)
3 ) y = \(\dfrac{2}{\sqrt{x+3}}+\sqrt{5-2x}\)
4 ) \(y=\sqrt{9-x}+\dfrac{1}{\sqrt{x+2}-2}\)
5 ) \(y=\dfrac{-3x}{x+2}\)
6) \(y=\sqrt{-2x-3}\)
7 ) \(y=\dfrac{3-x}{\sqrt{x-4}}\)
8 ) \(y=\dfrac{2x-5}{\left(3-x\right)\sqrt{5-x}}\)
9 ) \(y=\sqrt{2x+1}+\sqrt{4-3x}\)
HELP ME !!!!!!
a. \(\sqrt{5-x}\) + \(\sqrt{8+x}\) - \(\sqrt{\left(5-x\right)\left(8+x\right)}\) = -1
b. x - \(\sqrt{2x^2}-3x+4\) = 8
Tập xác định của hàm số: \(y=\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}\) có dạng \(\left[a;b\right]\). Tìm a+b