Lời giải:
Ta có:
\(y=\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}\)
\(\Leftrightarrow y=\sqrt{(\sqrt{x+2}+1)^2}+\sqrt{(\sqrt{1-x^2}+1)^2}\)
\(\Leftrightarrow y=\sqrt{x+2}+1+\sqrt{1-x^2}+1\)
ĐKXĐ của hàm số là:
\(\left\{\begin{matrix} x+2\geq 0\\ 1-x^2\geq 0\end{matrix}\right.\) \(\left\{\begin{matrix} x\geq -2\\ x^2\leq 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ -1\leq x\leq 1\end{matrix}\right.\Leftrightarrow -1\leq x\leq 1\)
Vậy \(x\in [-1;1]\Rightarrow a=-1;b=1\)
\(\Rightarrow a+b=0\)