Ta có (d1) : \(mx+y=1\)
=> \(y=1-mx\)
Ta có (d2) : \(x-my=m+6\)
=> \(y=\frac{x-m-6}{m}\)( I )
- Xét phương trình hoành độ giao điểm :
\(1-mx=\frac{x-m-6}{m}\)
=> \(m-m^2x=x-m-6\)
=> \(-m^2x-x=-m-6-m\)
=> \(x\left(-m^2-1\right)=-2m-6\)
=> \(x=\frac{2m+6}{m^2+1}\)
- Thay \(x=\frac{2m+6}{m^2+1}\) vào phương trình ( I ) ta được :
\(y=\frac{\frac{2m-6}{m^2+1}-m-6}{m}\)
- Thay \(y=\frac{\frac{2m-6}{m^2+1}-m-6}{m}\); \(x=\frac{2m+6}{m^2+1}\) vào đường thẳng (d) ta được :
\(\frac{2m+6}{m^2+1}+\frac{2\left(\frac{2m-6}{m^2+1}-m-6\right)}{m}=8\)
=> \(\frac{m\left(2m+6\right)}{m\left(m^2+1\right)}+\frac{2\left(\frac{2m-6}{m^2+1}-m-6\right)\left(m^2+1\right)}{m\left(m^2+1\right)}=8\)
=> \(\frac{m\left(2m+6\right)}{m\left(m^2+1\right)}+\frac{\frac{\left(4m-12\right)\left(m^1+1\right)}{m^2+1}-2m\left(m^2+1\right)-12\left(m^2+1\right)}{m\left(m^2+1\right)}=8\)
=> \(\left(4m-12\right)-2m\left(m^2+1\right)-12\left(m^2+1\right)+m\left(2m+6\right)=8m\left(m^2+1\right)\)
=> \(4m-12-2m^3-2m-12m^2-12+2m^2+6m=8m^3+8m\)
=> \(10m^3+10m^2+24=0\)
=> \(m^3+m^2+\frac{12}{5}=0\)
=> \(m\approx-1,76\)