Lời giải:
ĐK: \(x\geq 0; x\neq 1; x\neq 4y; y>0\)
\(B=\frac{\sqrt{x^3}}{\sqrt{y}(\sqrt{x}-2\sqrt{y})}-\frac{2x}{(x-2\sqrt{xy})+(\sqrt{x}-2\sqrt{y})}.\frac{(1-\sqrt{x})(1+\sqrt{x})}{1-\sqrt{x}}\)
\(=\frac{\sqrt{x^3}}{\sqrt{y}(\sqrt{x}-2\sqrt{y})}-\frac{2x}{(\sqrt{x}-2\sqrt{y})(\sqrt{x}+1)}.(1+\sqrt{x})\)
\(=\frac{\sqrt{x^3}}{\sqrt{y}(\sqrt{x}-2\sqrt{y})}-\frac{2x}{\sqrt{x}-2\sqrt{y}}\)
\(=\frac{\sqrt{x^3}-2x\sqrt{y}}{\sqrt{y}(\sqrt{x}-2\sqrt{y})}\)
\(=\frac{x(\sqrt{x}-2\sqrt{y})}{\sqrt{y}(\sqrt{x}-2\sqrt{y})}=\frac{x}{\sqrt{y}}\)