Ta có :
\(\sqrt{x^2+x+2}\) có nghĩa khi \(x^2+x+2\ge0=>\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge0\)
Mà \(\left(x+\dfrac{1}{x}\right)^2\ge0\) => A có nghĩa với mọi x
Ta có :
\(\sqrt{x^2+x+2}\) có nghĩa khi \(x^2+x+2\ge0=>\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge0\)
Mà \(\left(x+\dfrac{1}{x}\right)^2\ge0\) => A có nghĩa với mọi x
Cho M=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)
a)Tìm ĐKXĐ
b)Rút gọn
c)Tìm x để M<0
Cho biểu thức:
A=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Tìm ĐKXĐ và rút gọn A
b) Tính giá trị của A khi x=\(3-2\sqrt{2}\)
Tìm đkxđ của các biểu thức:
a) \(\sqrt{\dfrac{2x-5}{x+2}}\)
b) \(\sqrt{2-x^2}\)
c)\(\sqrt{1-\sqrt{x-1}}\)
Bài 3. Cho biểu thức : B = 1/(2sqrt(x) - 2) - 1/(2sqrt(x) + 2) + (sqrt(x))/(1 - x) A = (1 - (5 + sqrt(5))/(1 + sqrt(5)))((5 - sqrt(5))/(1 - sqrt(5)) - 1)
a) Tính A
b) Tìm ĐKXĐ rồi rút gọn biểu thức B;
c) Tính giá trị của B với x = 9
d) Tìm giá trị của x để |B| = A
Tìm đkxđ của biểu thức : B = \(\sqrt{x^2-3x}\) + \(\sqrt{\dfrac{x-5}{x-1}}\) - \(\sqrt[3]{2x-1}\)
Cho P = (\(\dfrac{1}{\sqrt{x}-1 }\) - \(\dfrac{1}{\sqrt{x}}\))(\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) - \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\))
a. Tìm đkxđ và rút gọn P
b. Tìm x để P = \(\dfrac{1}{4}\)
Cho biểu thức sau:\(B=\dfrac{\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}}{\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x+1}}}\)
A)Tìm ĐKXĐ của B và thu gọn B
B)Tại \(x=\dfrac{a^2+b^2}{2ab}\left(a>b>0\right)\),tính giá trị của B theo a,b
C)Tìm tất cả các giá trị của x để B≤1
D)Tìm tất cả các giá trị của x để B=2
Cho P = (\(\dfrac{\sqrt{x}}{\sqrt{x}-1 }\) - \(\dfrac{1}{x-\sqrt{x}}\))(\(\dfrac{1}{1+\sqrt{x}}\) + \(\dfrac{2}{x-1}\))
a. Tìm đkxđ và rút gọn P
b. Tìm x để P>0
Cho biểu thức
P =\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
a) Tìm ĐKXĐ và rút gọn P
b) Tìm các giá trị của x để P>0
c) Tìm x để P =6
Tìm ĐKXĐ
\(B=\sqrt{2x-1}+\sqrt{\dfrac{3-x}{\sqrt{x+2}}}\)