\(\lim\limits_{x\rightarrow-\infty}x\left(\sqrt[3]{1+\dfrac{4}{x^2}}+m\right)\)
Do \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{1+\dfrac{4}{x^2}}+m\right)=m+1\) nên để giới hạn đã cho bằng \(+\infty\)
\(\Leftrightarrow m+1< 0\Rightarrow m< -1\)
\(\lim\limits_{x\rightarrow-\infty}x\left(\sqrt[3]{1+\dfrac{4}{x^2}}+m\right)\)
Do \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{1+\dfrac{4}{x^2}}+m\right)=m+1\) nên để giới hạn đã cho bằng \(+\infty\)
\(\Leftrightarrow m+1< 0\Rightarrow m< -1\)
bài 1
a. \(\lim\limits_{n\rightarrow+\infty}\left(\sqrt[3]{n^3+3n+1}-n\right)\)
b. \(\lim\limits_{n\rightarrow+\infty}\left(\sqrt[3]{n^3+2n}-\sqrt{n^2+1}\right)\)
c.\(\lim\limits_{n\rightarrow+\infty}\left(\sqrt[3]{n^3+n}-\sqrt[3]{n^3-2n^2}\right)\)
bài 2
a. \(\lim\limits_{n\rightarrow+\infty}\left(2n-\sqrt{n^2+3n}\right)\)
b. \(\lim\limits_{n\rightarrow+\infty}\left(\sqrt{n^2+2}-\sqrt{3n+1}\right)\)
c. \(\lim\limits_{n\rightarrow+\infty}\left(n\sin2n-3n^3\right)\)
có bao nhiêu giá trị m nguyên thuộc đoạn \(\left[-20;20\right]\) để \(\lim\limits_{x\rightarrow-\infty}\left(mx+2\right)\left(m-3x^2\right)=-\infty\)?
tìm giới hạn của dãy số
1.\(\lim\limits_{n->\infty}\left(\sqrt[3]{n^3+n^2+n+1}-n\right)\)
2.\(\lim\limits_{n->\infty}\left(\sqrt{n^2+n}-\sqrt{n^2-n+1}\right)\)
3.tìm a,b để \(\lim\limits_{n->\infty}\left(\sqrt{an^2+bn+2}-2n\right)=2\)
cho \(A=\lim\limits_{x\rightarrow+\infty}\dfrac{mx+2006}{x+\sqrt{x^2+2007}}\). tìm m để A=0
cho \(\lim\limits_{x\rightarrow-\infty}\dfrac{a\sqrt{x^2+1}+2017}{x+2018}=\dfrac{1}{2}\); \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+bx+1}-x\right)=2\). Tính P=4a+b
cho biết \(\lim\limits_{x\rightarrow-\infty}\dfrac{1-\sqrt{4x^2-x+5}}{a\left|x\right|+2}=\dfrac{2}{3}\). tính giá trị a?
tìm giới hạn \(\lim\limits_{x\rightarrow+\infty}\left(x+1-\sqrt{x^2-x+2}\right)\)
giới hạn \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(x-1\right)^2\left(2x^3+3x\right)}{4x-x^5}=\dfrac{a}{b}\). tìm a,b biết a/b tối giản
tính \(\lim\limits_{n\rightarrow+\infty}n\left(\sqrt{n^2-2n}-\sqrt[3]{n^3-3n^2}\right)\)