\(A=\dfrac{\left(x+y\right)^2}{x^3+y^3}\cdot\left(\dfrac{x^2-y^2}{x-y}-\dfrac{x^3-y^3}{x^2-y^2}\right)\)
\(=\dfrac{\left(x+y\right)^2}{\left(x+y\right)\left(x^2-xy+y^2\right)}\cdot\left(\dfrac{\left(x^2-y^2\right)\left(x+y\right)-x^3+y^3}{\left(x-y\right)\left(x+y\right)}\right)\)
\(=\dfrac{\left(x+y\right)}{x^2-xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)}{x^3+x^2y-xy^2-y^3-x^3+y^3}\)
\(=\dfrac{\left(x+y\right)^2\cdot\left(x-y\right)}{\left(x^2-xy+y^2\right)\cdot xy\left(x-y\right)}=\dfrac{\left(x+y\right)^2}{xy\left(x^2-xy+y^2\right)}\)