a/ \(y'=\frac{\left(2cos2x-2sin2x\right)\left(2sin2x-cos2x\right)-\left(sin2x+cos2x\right)\left(4cos2x+2sin2x\right)}{\left(2sin2x-cos2x\right)^2}\)
\(=\frac{3sin4x-2cos^22x-4sin^22x-3sin4x-2sin^22x-4cos^22x}{\left(2sin2x-cos2x\right)^2}\)
\(=\frac{-6cos^22x-6sin^22x}{\left(2sin2x-cos2x\right)^2}=-\frac{6}{\left(2sin2x-cos2x\right)^2}\)
b/ \(y'=4cosx.cos5x.sin6x+4sinx\left(cos5x.sin6x\right)'\)
\(=4cosx.cos5x.sin6x+4sinx\left(-5sin5x.sin6x+6cos5x.cos6x\right)\)
\(=4cosx.cos5x.sin6x+4sinx\left(6cos11x+sin5x.sin6x\right)\)
\(=4sin6x\left(cosx.cos5x+sinx.sinx\right)+24sinx.cos11x\)
\(=4sin6x.cos4x+24sinx.cos11x\)
c/ \(y'=\frac{\left(2cos2x-2sin2x\right)\left(sin2x-cos2x\right)-\left(sin2x-cos2x\right)\left(2cos2x+2sin2x\right)}{\left(sin2x-cos2x\right)^2}\)
\(=\frac{-2\left(sin2x-cos2x\right)^2-2\left(sin2x-cos2x\right)\left(sin2x+cos2x\right)}{\left(sin2x-cos2x\right)^2}\)
\(=\frac{-2\left(sin2x-cos2x\right)-2\left(sin2x+cos2x\right)}{sin2x-cos2x}=\frac{-4sin2x}{sin2x-cos2x}\)