tìm đa thức A:
A+(x^2-4xy^2xz-3y^2)=0
Thu gọn các đa thức sau:
a) A = [3y2(2y - 1) + y + 1] - y(1 - y + y2) - y2
b) B = 2ax2 - a(1 + 2x2) - [a - x(x + a)]
c) C = [2p3 - (p3 - 1) + (p + 3)2p2 - 2p3](3p2) - 3p5
A=-x2+3xy+2y2;B=4x2-5xy+3y2;C=3x2+2xy+y2.Tính A-B-C
cho hai đa thức:
A(x) = x5 – 3x2 + 7x4 – 9x3 + x2 – ¼ x
B(x) = 5x4 – x5 + x2 – 2x3 +3x2 – ¼
a, thu gọn và sắp xếp đa thức trên lũy thừ giảm dần của 1 biến
b, tính f(x) + A(x) + B(x); g(x) = A(x) – B(x)
c, tính giá trị của đa thức g(x) tại x = -1
1) Thu gọn và sắp xếp các hạng của các đa thức sau theo lũy thừa giảm của các biến và chỉ rõ các hệ khác 0 của :
a, A(x)= 4+3x2-4x3+4x2-2x-x3+5x5
b, B(x)= x2+2x4+4x3-5x6+3x2-4x-1
2) Tính tổng và hiệu của 2 đa thức trên sau khi đã thu gọn
Câu 3. Cho 2 đa thức: M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + x2 – 6
N(x) = – x2 – x4 + 4x3 – x2 – 5x3 + 3x + 1 + x
a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến, tìm bậc, hệ số cao nhất, hệ số tự do của đa thức M(x).
b) Tính P(x) = M(x) + N(x) ; Q(x) = M(x) – N(x)
c) Tính Q(x) tại x = –2.
d) Chứng minh đa thức H(x) = M(x) – 8x2 + x + 8 không có nghiệm.
Cho các đa thức :
A (x) = 2x - 6x3 - x2 + 10x3 - 2 ( x - 1 ) - 4x2
B (x) = -5x3 - ( x2 + 1 ) + 5x + x2 - 8x + 3x3
C (x) = 2x - 3x2 - 4 + x3
a . thu gọn các đa thức trên và sắp xếp theo lũy thừa giảm dần của biến .
b . Tính A(x) + B(x) - C(x)
c . tìm nghiệm của đa thức P(x) , biết P(x) = C(x) - x3 +4
bài 1. cho hai đa thức
P = 5xyz + 2xy - 3x2 - 11
Q = 15 - 5x2 + xyz - xy
tính P + Q ; P- Q
bài 2 . tìm đa thức A , B , C biết
a) A - ( x2 - 2xy + z2) = 3xy - z2 + 5x2
b) B + ( x2 + ỳ - z2) + x2 - y2 + z2
c) 4x2 - 7x + 1 - C = 3x2 - 7x - 1
tìm đa thức A sao cho
a) tổng của đa thức A với đa thức 2x^4 - 3x^2y + y^4 + 3xz + z^2 là một đa thức ko chứa biến x
b) tổng của đa thức A với đa thức 3xy^2 + 3xz^2 - 3xyz - 8y^2z^2 + 10 là một đa thức bậc 0