đáp án:
n2+2n−6⋮n+4n2+2n−6⋮n+4
→n2+4n−2n−6⋮n+4→n2+4n−2n−6⋮n+4
→n(n+4)−2n−6⋮n+4→n(n+4)−2n−6⋮n+4
Mà n(n+4)⋮n+4n(n+4)⋮n+4
→−2n−6⋮n+4→−2n−6⋮n+4
→−2n−8+2⋮n+4→−2n−8+2⋮n+4
→−2(n+4)+2⋮n+4→−2(n+4)+2⋮n+4
Mà −2(n+4)⋮n+4−2(n+4)⋮n+4
→2⋮n+4→2⋮n+4
→n+4∈Ư(2)=1;2→n+4∈Ư(2)=1;2
→n∈{−3;−2}→n∈{-3;-2}
Mà n∈Nn∈ℕ
→n∈∅