\(\left\{{}\begin{matrix}a+3c=8\\a+2b=9\end{matrix}\right.\)
\(\Rightarrow a+3c+a+2b=17\)
\(\Rightarrow2a+3c+2b=17\)
\(\Rightarrow2a+2b+2c+c=17\)
\(\Rightarrow2\left(a+b+c\right)=17-c\)
⇒ c là số lẻ
\(MAX_{a+b+c}\Rightarrow MAX_{2\left(a+b+c\right)}\Rightarrow MIN_c\)
Vì a,b,c ≥ 0 nên c=0
⇒a + 3 = 8 ⇒ a = 5
⇒2b + 5 = 9 ⇒ b = 2
Vậy a=5; b=2; c=0