Ta có:
A=\(\dfrac{3.n+2}{n-1}\)=\(\dfrac{3.\left(n-1\right)+5}{n-1}\)=\(\dfrac{3.\left(n-1\right)}{n-1}\)+\(\dfrac{5}{n-1}\)=3+\(\dfrac{5}{n-1}\)
Để A có giá trị nguyên thì 5\(⋮\)n-1 hay n-1\(\in\)Ư(5)
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Vậy n\(\in\){2;0;6;-4}
\(A=\dfrac{3n+2}{n-1}=\dfrac{3\left(n-1\right)+5}{n-1}\)
\(Để\) \(A\in Z\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)
n-1 | -5 | -1 | 1 | 5 |
n | -1 | 0 | 2 | 6 |
Vậy để \(A\in Z\Rightarrow n=\)-1;0;2;6