\(\Delta'=\left(m+1\right)^2-\left(m^2+5m+4\right)=-3m-3>0\Rightarrow m< -1\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+5m+4\end{matrix}\right.\)
Để biểu thức đề bài có nghĩa \(\Leftrightarrow x_1x_2\ne0\Rightarrow m\ne\left\{-4;-1\right\}\)
\(\frac{1}{x_1}+\frac{1}{x_2}=1\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=1\)
\(\Leftrightarrow x_1+x_2=x_1x_2\)
\(\Leftrightarrow2\left(m+1\right)=m^2+5m+4\)
\(\Leftrightarrow m^2+3m+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\left(l\right)\\m=-2\end{matrix}\right.\)