Bài 2: Giới hạn của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen thi be

tim a,b để lim \(\dfrac{ax+b-2\sqrt{x}}{x^3-3x+2}=\dfrac{1}{12}\) khi x->1

Nguyễn Việt Lâm
31 tháng 1 2021 lúc 18:23

Do mẫu số có nghiệm kép \(x=1\) và giới hạn hữu hạn \(\Rightarrow ax+b-2\sqrt{x}=0\) có nghiệm kép \(x=1\) 

\(\Rightarrow a+b-2=0\Rightarrow b=2-a\)

\(\Rightarrow ax+2-a-2\sqrt{x}=0\)

\(\Rightarrow a\left(x-1\right)-\dfrac{2\left(x-1\right)}{\sqrt{x}+1}=0\Leftrightarrow\left(x-1\right)\left(a-\dfrac{2}{\sqrt{x}+1}\right)=0\)

\(\Rightarrow a-\dfrac{2}{\sqrt{x}+1}=0\) cũng có nghiệm \(x=1\)

\(\Rightarrow a-\dfrac{2}{1+1}=0\Rightarrow a=1\Rightarrow b=1\)

Thử lại: \(\lim\limits_{x\rightarrow1}\dfrac{x+1-2\sqrt{x}}{\left(x-1\right)^2\left(x+2\right)}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+2\right)\left(x+1+2\sqrt{x}\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{1}{\left(x+2\right)\left(x+1+2\sqrt{x}\right)}=\dfrac{1}{12}\) (thỏa mãn)


Các câu hỏi tương tự
Bảo Bình
Xem chi tiết
Trần Thị Hằng
Xem chi tiết
dung doan
Xem chi tiết
James Pham
Xem chi tiết
dung doan
Xem chi tiết
Trần Thị Hằng
Xem chi tiết
dung doan
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
dung doan
Xem chi tiết