Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) \(y=f\left(x\right)=\dfrac{4}{\sqrt{5-2\cos^2x\sin^2x}}\)
b)\(y=f\left(x\right)=3\sin^2x+5\cos^2x-4\cos2x-2\)
c)\(y=f\left(x\right)=\sin^6x+\cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
3. Tìm GTLN, GTNN:
a) \(y=2\sin^2x+3\sin x\cos x-2\cos^2x+5\)
b) \(y=\dfrac{3\sin x-\cos x+1}{\sin x-2\cos x+4}\)
c) \(y=\dfrac{2\left(x^2+6xy\right)}{1+2xy+y^2}\) biết x, y thay đổi thỏa mãn \(x^2+y^2=1\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) y=f(x)=\(\dfrac{4}{\sqrt{5-2cos^2xsin^2x}}\)
b)y=f(x)=\(3sin^2x+5cos^2x-4cos2x-2\)
c)y=f(x)=\(sin^6x+cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
Tìm GTLN, GTNN:
a, \(y=\sin x+\cos x\).
b, \(y=\dfrac{1}{2}\sin x+\dfrac{\sqrt{3}}{2}\cos x+3\).
c, \(y=\sqrt{3}\sin2x-\cos2x\).
Tìm chu kỳ:
a, \(y=2\sin x\cos3x\).
b, \(y=\cos\dfrac{3x}{5}-\sin\dfrac{2x}{7}\).
Xét tính chẵn - lẻ:
a, \(y=\dfrac{\cos^3x+1}{\sin^3x}\).
b, \(y=\dfrac{\sin x}{x+1}\).
Tìm a để hệ sau có nghiệm duy nhất:
\(\left\{{}\begin{matrix}ax^2+a=y+\left|cosx\right|\\sin^2x+y^2=1\end{matrix}\right.\)
Tịnh tiến đồ thị hàm số y= cos x sang phải \(\dfrac{\pi}{2}\) ta được đồ thị hàm số nào
A. \(y=sinx\)
B.\(y=-cosx\)
C.\(y=\)\(cos\left(x+\dfrac{\pi}{2}\right)\)
D.\(y=sin\left(x-\dfrac{\pi}{2}\right)\)
Cho \(x,y\in\left(0;\dfrac{\pi}{2}\right)\)thoả mãn \(\cos2x+\cos2y+2\sin\left(x+y\right)=2\) . Tìm giá trị nhỏ nhất của \(P=\dfrac{\sin^4x}{y}+\dfrac{\cos^4y}{x}\)