Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) \(y=f\left(x\right)=\dfrac{4}{\sqrt{5-2\cos^2x\sin^2x}}\)
b)\(y=f\left(x\right)=3\sin^2x+5\cos^2x-4\cos2x-2\)
c)\(y=f\left(x\right)=\sin^6x+\cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
Tìm nghiệm của các phương trinh:
1,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
2,\(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}\left(1+cot2xcotx\right)=0\)
3,\(cos^4x+sin^4x+cos\left(x-\dfrac{\pi}{4}\right)sin\left(3x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
4,\(cos5x+cos2x+2sin3xsin2x=0\) trên \(\left[0;2\pi\right]\)
5,\(\dfrac{cos\left(cosx+2sinx\right)+3sinx\left(sinx+\sqrt{2}\right)}{sin2x-1}=1\)
6,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
7,\(cos\left(2x+\dfrac{\pi}{4}\right)+cos\left(2x-\dfrac{\pi}{4}\right)+4sinx=2+\sqrt{2}\left(1-sinx\right)\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) y=f(x)=\(\dfrac{4}{\sqrt{5-2cos^2xsin^2x}}\)
b)y=f(x)=\(3sin^2x+5cos^2x-4cos2x-2\)
c)y=f(x)=\(sin^6x+cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
Nghiệm của phương trình \(sin^4x+cos^4x+cos\left(x-\dfrac{\pi}{4}\right).sin\left(3x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
Giải PT
a1) \(3.\cos4x-2^{ }\cos^23x=1\)
a2) \(2\cos2x-8\cos x+7=\dfrac{1}{\cos x}\)
a3) \(\dfrac{\left(1+\sin x+\cos2x\right)\sin\left(x+\dfrac{\pi}{4}\right)}{1+\tan x}=\dfrac{1}{\sqrt{2}}\cos x\)
a4) \(9\sin x+6\cos x-3\sin2x+\cos2x=8\)
a/\(\sin3x+\cos2x=1+2\sin x\cos2x\)
b/\(\sin^3x+\cos^3x=2\left(\sin^5x+\cos^5x\right)\)
c/\(\dfrac{\tan x}{\sin x}-\dfrac{\sin x}{\cos x}=\dfrac{\sqrt{2}}{2}\)
d/\(\dfrac{\cos x\left(\cos x+2\sin x\right)+3\sin x\left(\sin x+\sqrt{2}\right)}{\sin2x-1}=1\)
e/\(\sin^2x+\sin^23x-2\cos^22x=0\)
f/\(\dfrac{\tan x-\sin x}{\sin^3x}=\dfrac{1}{\cos x}\)
g/\(\sin2x\left(\cos x+\tan2x\right)=4\cos^2x\)
h/\(\sin^2x+\sin^23x=\cos^2x+\cos^23x\)
k/\(4\sin2x=\dfrac{\cos^2x-\sin^2x}{\cos^6x+\sin^6x}\)
mọi người giải giúp em với em đang cần gấp ạ
1.Cho \(\alpha,\beta\left(\alpha\ne\beta\right)\in\left(0;\dfrac{\pi}{2}\right)\)và thỏa mãn điều kiện \(\dfrac{cosx-cos\alpha}{cosx-cos\beta}=\dfrac{sin^2\alpha cos\beta}{sin^2\beta cos\alpha}\)
(giả sử \(x\) xác định). Chứng minh\(tan^2\dfrac{x}{2}=tan^2\dfrac{\alpha}{2}tan^2\dfrac{\beta}{2}\)
2. Giải hệ phương trình \(\left\{{}\begin{matrix}xy-2y-3=\sqrt{y-x-1}+\sqrt{y-3x+5}\\\left(1-y\right)\sqrt{2x-y}+2\left(x-1\right)=\left(2x-y-1\right)\sqrt{y}\end{matrix}\right.\)
3. Cho ba số thực dương a, b, c thỏa mãn \(\dfrac{1}{a+2}+\dfrac{1}{b+3}+\dfrac{1}{c+4}=1\). Tìm Min của biểu thức \(P=a+b+c+\dfrac{4}{\sqrt[3]{a\left(b+1\right)\left(c+2\right)}}+3\)
4. Tìm m để hệ bất phương trình \(\left\{{}\begin{matrix}x^2-5x+9\le\left|x-6\right|\\x^2+2x-3m^2+4\left|m\right|-4\le0\end{matrix}\right.\)
bài 1: a) \(sin\left(2x+\dfrac{\pi}{6}\right)+sin\left(x-\dfrac{\pi}{3}\right)=0\)
b) \(sin\left(2x-\dfrac{\pi}{3}\right)-cos\left(x+\dfrac{\pi}{3}\right)=0\)
c) \(sin\left(2x+\dfrac{\pi}{3}\right)+cos\left(x-\dfrac{\pi}{6}\right)=0\)
1) sin\(\sin\left[\pi sin2x\right]\)=1
2) cos\(\left[\dfrac{\pi}{2}.cos\left(x-\dfrac{\pi}{4}\right)\right]\)=\(\dfrac{\sqrt{2}}{2}\)
3) sin(x+24*) + sin(x+144*) = cos20*