Lời giải:
\(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{\frac{6-2\sqrt{5}}{2}}+\sqrt{\frac{6+2\sqrt{5}}{2}}\)
\(=\sqrt{\frac{5-2\sqrt{5}+1}{2}}+\sqrt{\frac{5+2\sqrt{5}+1}{2}}=\sqrt{\frac{(\sqrt{5}-1)^2}{2}}+\sqrt{\frac{(\sqrt{5}+1)^2}{2}}\)
\(=\frac{\sqrt{5}-1}{\sqrt{2}}+\frac{\sqrt{5}+1}{\sqrt{2}}=2.\frac{\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
\(B=\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}\)
\(=\sqrt{18+2\sqrt{18.3}+3}+\sqrt{18-2\sqrt{18.3}+3}\)
\(=\sqrt{(\sqrt{18}+\sqrt{3})^2}+\sqrt{(\sqrt{18}-\sqrt{3})^2}\)
\(=\sqrt{18}+\sqrt{3}+\sqrt{18}-\sqrt{3}=2\sqrt{18}=6\sqrt{2}\)
--------------
\(C=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Rightarrow C^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{(4+\sqrt{10+2\sqrt{5}})(4-\sqrt{10+2\sqrt{5}})}\)
\(8+2\sqrt{4^2-(10+2\sqrt{5})}=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{5-2\sqrt{5}+1}=8+2\sqrt{(\sqrt{5}-1)^2}\)
\(=8+2(\sqrt{5}-1)=6+2\sqrt{5}=(\sqrt{5}+1)^2\)
\(\Rightarrow C=\sqrt{5}+1\)
Lời giải:
\(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{\frac{6-2\sqrt{5}}{2}}+\sqrt{\frac{6+2\sqrt{5}}{2}}\)
\(=\sqrt{\frac{5-2\sqrt{5}+1}{2}}+\sqrt{\frac{5+2\sqrt{5}+1}{2}}=\sqrt{\frac{(\sqrt{5}-1)^2}{2}}+\sqrt{\frac{(\sqrt{5}+1)^2}{2}}\)
\(=\frac{\sqrt{5}-1}{\sqrt{2}}+\frac{\sqrt{5}+1}{\sqrt{2}}=2.\frac{\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
\(B=\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}\)
\(=\sqrt{18+2\sqrt{18.3}+3}+\sqrt{18-2\sqrt{18.3}+3}\)
\(=\sqrt{(\sqrt{18}+\sqrt{3})^2}+\sqrt{(\sqrt{18}-\sqrt{3})^2}\)
\(=\sqrt{18}+\sqrt{3}+\sqrt{18}-\sqrt{3}=2\sqrt{18}=6\sqrt{2}\)
--------------
\(C=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Rightarrow C^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{(4+\sqrt{10+2\sqrt{5}})(4-\sqrt{10+2\sqrt{5}})}\)
\(8+2\sqrt{4^2-(10+2\sqrt{5})}=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{5-2\sqrt{5}+1}=8+2\sqrt{(\sqrt{5}-1)^2}\)
\(=8+2(\sqrt{5}-1)=6+2\sqrt{5}=(\sqrt{5}+1)^2\)
\(\Rightarrow C=\sqrt{5}+1\)