\(B=\left(x+1\right)\cdot\left(x^7-x^6+x^5-x^4+x^3-x^2+x-1\right)\\ =x^8+x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-1\\ x^8+\left(x^7-x^7\right)+\left(-x^6+x^6\right)+\left(x^5-x^5\right)+\left(-x^4+x^4\right)+\left(x^3-x^3\right)+\left(-x^2+x^2\right)+\left(x-x\right)-1\\ =x^8-1\)Tại \(x=2\)
\(B=2^8-1=256-1=255\)
\(C=\left(x-1\right)\cdot\left(x^6+x^5+x^4+x^3+x^2+x+1\right)\\ =x^7-x^6+x^6-x^5+x^5-x^4+x^4-x^3+x^3-x^2+x^2-x+x-1\\ =x^7+\left(-x^6+x^6\right)+\left(-x^5+x^5\right)+\left(-x^4+x^4\right)+\left(-x^3+x^3\right)+\left(-x^2+x^2\right)+\left(-x+x\right)-1\\ =x^7-1\)
Tại \(x=2\)
\(C=x^7-1=128-1=127\)