thực hiện phép tính
\(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{16}-2}-\dfrac{12}{3-\sqrt{16}}\right).\left(\sqrt{6}+11\right)\)
Thực hiện phép tính:
A=\(\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right).\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right).\left(-\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\)
B=\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{5}}\)
C=\(\left(\sqrt{3}-\sqrt{2}\right).\sqrt{5-2\sqrt{6}}\)
D=\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
Bài 1: Rút gọn biểu thức
a) \(A=\sqrt{26+15\sqrt{3}}\)
b) \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
c) \(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
d) \(D=\left(\sqrt{6}-2\right)\left(5+\sqrt{24}\right)\sqrt{5-\sqrt{24}}\)
e) \(E=\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{3+\sqrt{5}}\right)\)
f) \(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
g) \(G=\left(2-\sqrt{3}\right)\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)
h) \(H=\frac{\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}\)
Rút gọn
\(P=\frac{1}{3}\left(\sqrt[3]{2}+1\right)\left(\sqrt{12\sqrt[3]{2}-15}+2\sqrt{3\sqrt[3]{4}-3}\right)\)
\(P=\frac{1}{3}\left(\sqrt[3]{2}+1\right)\left(\sqrt{12\sqrt[3]{2}-15}+2\sqrt{3\sqrt[3]{4}-3}\right)\)
\(P=\frac{1}{3}\left(\sqrt[3]{2}+1\right)\left(\sqrt{12\sqrt[3]{2}-15}+2\sqrt{3\sqrt[3]{4}-3}\right)\)
Thực hiện phép tính:
a) \(\left(\frac{1}{7-4\sqrt{3}}+\frac{3}{7+4\sqrt{3}}\right)\left(7+2\sqrt{3}\right)\)
b)\(\left(\frac{3\sqrt{5}-\sqrt{15}}{\sqrt{27}-3}+\frac{2\sqrt{5}}{\sqrt{3}}\right).4\sqrt{15}\)
c)\(\sqrt{5-2\sqrt{6-25-\sqrt{96}}}\)
d)\(\sqrt{23-2\sqrt{112}}+\sqrt{23+2\sqrt{112}}\)
Rút gọn các biểu thức sau:
a) \(\dfrac{3-2\sqrt{2}}{1-\sqrt{2}}\) b)\(\dfrac{5\sqrt{6}-15}{6-2\sqrt{6}}\)
c) \(\sqrt{\left(3-2\sqrt{2}\right)\left(4-2\sqrt{3}\right)}\)
d) \(\sqrt{\left(6+2\sqrt{5}\right)^3}-\sqrt{\left(6-2\sqrt{5}\right)^3}\)
Tính:
\(a)D=\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\left(-\sqrt{2}\right)\\ b)2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}\right)-\sqrt{75}\\ c)E=\left(\sqrt{10}+\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\\ d)P=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(e)M=-3\sqrt{50}+2\sqrt{98}-7\sqrt{72}\)
Rút gọn biểu thức:
a)\(\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
b)\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
c)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
d)\(\left(1+tan^2a\right)\left(1-sin^2a\right)+\left(1+cotan^2a\right)\left(1-cos^2a\right)\)
Tính:
\(a.\) \(A=\sqrt{12}-2\sqrt{48}+\dfrac{7}{5}\sqrt{75}\)
\(b.\) \(B=\sqrt{14-6\sqrt{5}}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(c.\) \(C=\left(\sqrt{6}-\sqrt{2}\right)\sqrt{2+\sqrt{3}}\)
\(d.\) \(D=\dfrac{5+\sqrt{5}}{\sqrt{5}+2}+\dfrac{\sqrt{5}-5}{\sqrt{5}}-\dfrac{11}{2\sqrt{5}+3}\)