Ta có: \(tan\alpha\in\left(0;1\right)\) với mọi \(\alpha \in \left( {0;\dfrac{\pi }{4}} \right) \), do đó:
\(S = \underbrace {1 - \tan \alpha + {{\tan }^2}\alpha - {{\tan }^3}\alpha + ...}_{CSN\_lvh:{u_1} = 1,q = - \tan \alpha } = \dfrac{1}{{1 + \tan \alpha }} = \dfrac{{\cos \alpha }}{{\sin \alpha + \cos \alpha }} = \dfrac{{\cos \alpha }}{{\sqrt 2 \sin \left( {\alpha + \dfrac{\pi }{4}} \right)}}\)