Ta có công thức :
\(1-\frac{1}{k^2}=\frac{k^2-1^2}{k^2}=\frac{\left(k+1\right)\left(k-1\right)}{k^2}\)
Áp dụng công thức trên ta được :
\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\)
\(=\frac{2^2-1^2}{2^2}.\frac{3^2-1^2}{3^2}.\frac{4^2-1^2}{4^2}....\frac{n^2-1^2}{n^2}\)
\(=\frac{\left(2+1\right)\left(2-1\right)}{2.2}.\frac{\left(3+1\right)\left(3-1\right)}{3.3}.\frac{\left(4+1\right)\left(4-1\right)}{4.4}...\frac{\left(n+1\right)\left(n-1\right)}{n.n}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{\left(n+1\right)\left(n-1\right)}{n.n}\)
\(=\frac{\left[1.2.3.....\left(n+1\right)\right].\left[3.4.5...\left(n-1\right)\right]}{\left(2.3.4....n\right)\left(2.3.4....n\right)}\)
\(=\left(n+1\right).\frac{1}{2n}=\frac{n+1}{2n}\)