\(x^2+x+1\) là số chính phương
\(\Rightarrow x^2+x+1=k^2\)
\(\Rightarrow4x^2+4x+1+3=4k^2\)
\(\Rightarrow4k^2-\left(2x+1\right)^2=3\)
\(\Rightarrow\left(2k+2x+1\right)\left(2k-2x-1\right)=3\)
Phương trình ước số cơ bản, bạn tự giải
\(x^2+x+1\) là số chính phương
\(\Rightarrow x^2+x+1=k^2\)
\(\Rightarrow4x^2+4x+1+3=4k^2\)
\(\Rightarrow4k^2-\left(2x+1\right)^2=3\)
\(\Rightarrow\left(2k+2x+1\right)\left(2k-2x-1\right)=3\)
Phương trình ước số cơ bản, bạn tự giải
\(\text{Tìm }x,y\in N^{\varkappa}\)\(\text{ thỏa mãn }:\frac{1}{x}+\frac{1}{y}=\frac{1}{p}\)
p là số nguyên tố
cho N=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}+3}{2-\sqrt{x}}\)
a. tìm ĐKXĐ và rút gọn
b.tìm x để N=5
c. tìm x\(\in\)Z để n\(\in\)Z
giải phương trình
\(\text{x}^2-4=3\sqrt{\text{x}^3-4\text{x}}\)
\(9\text{x}+17=6\sqrt{8\text{x}-1}+4\sqrt{\text{x}+3}\)
\(\sqrt{2\text{x}-1}+\text{x}=\sqrt{\text{x}}+\sqrt{\text{x}^2-\text{x}+1}\)
\(2\sqrt{\text{x}^2-\text{x}+1}+\sqrt{\text{x}^2+\text{x}+1}=\sqrt{\text{x}^4+\text{x}^2+1}+2\)
Giải phương trình sau:
\(1,\sqrt{x-2}-\sqrt{x+1}=\sqrt{2\text{x}-1}-\sqrt{x+3}\)
\(2,x^2-6\text{x}+26=6\sqrt{2\text{x}+1}\)
\(3,\left(\sqrt{x+5}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+7\text{x}+10}\right)=3\)
4,\(\sqrt[3]{x-4}-\sqrt{9-x}=-1\)
5,\(\left(x+1\right)\sqrt{16\text{x}+17}=8\text{x}^2-15\text{x}-23\)
Giúp mình với ạ mình đang cần gấp <3
Cho biểu thức:
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)
Tìm x \(\in\) N để P nhân giá trị nhỏ nhất
\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3\text{x}+5\right)}=4-2\text{x}\)
\(\sqrt{x}+\sqrt{3-2\text{x}}=\left(x^2-2\text{x}+2\right)\left(1+\sqrt{2-x}\right)\)
\(x^2+2\text{x}-2+\sqrt{2\text{x}-1}-\sqrt{5-x}\)
Cho \(A_n=\dfrac{1}{\left(2n+1\right)\sqrt{2n-1}},\forall n\in N\text{*}\)
CMR: \(A_1+A_2+...+A_n< 1\)