Cho hình thoi ABCD có ∠A =120o. Gọi M là điểm thuộc canh AB . Các đường thẳng DM và BC cắt nhau tại N.
a) Chứng minh: AB2= AM.CN
b) Gọi E là giao điểm cuả tia CM với AN. Tính ∠AEC
c) Trên tia đối của tia BD lấy điểm F sao cho FM cắt AD, AC lần lượt tại S, K. Chứng minh: \(\frac{DA}{SA}\)+\(\frac{AB}{AM}\)=\(\frac{AC}{AK}\)
Cho tam giác ABC, một đường thẳng song song BC cắt AB, AC lần lượt tại D và E. Trên tí đối tia CA lấy điểm F sao cho CF = BD, gọi M là giao điểm DF và BC. Chứng minh \(\dfrac{MD}{MF}=\dfrac{AC}{AB}\)
Cho tam giácABC vuông tại A , đường trung tuyến AM . Gọi H là điểm đối xứng với M qua AB , K là điểm đối xứng với M qua AC , E là giao điểm cuae MH và AB , F là giao điểm của MK và AC
a ) Tứ giác AEMF là hình gì ? Vì sao
b ) Chứng minh rằng H đối xứng với điểm K qua điểm A
c ) Tam giác vuông ABC cần có thêm điều kiện gì để tứ giác AEMF là hình vuông
d ) Tính diện tích hình vuông AEMF biết BC = 10cm
Cho tam giác ABC có AB<AC, D nằm giữa A và C sao cho: \(\widehat{ABD}=\widehat{ACB}\). Phân giác của góc A cắt BC tại E, BD tại F. Qua A kẻ đường thẳng vuông góc với AE cắt BC tại M. CM: MB.EC=MC.EB
Câu 1 : Cho tam giác ABC cân tại A . GỌi các điểm P,Q,M lần lượt là trung điểm của AB,AC,BC.
1.Chứng minh tứ giác PQCM là hình bình hành
2.TRên tia đối của tia PM lấy điểm N sao cho PM=PN. Chứng minh NB vuông góc với BC
3.Đường thẳng đi qua điểm Q và song song với PC cắt BC tại F. CHứng minh N,Q,F thẳng hàng .
Câu 2:
Tìm giá trị nhỏ nhất của biểu thức \(B=2x^2+4y^2+4x^2y-10x^2-4y+2037\)
Cho tam giác ABC đều, G là trọng tâm của tam giác . Gọi M là 1 điểm bất kỳ thuộc BC, I là trung điểm của AM. Kẻ AH vuông góc với BC. Gọi D và E lần lượt là hình chiếu của MN trên AB và AC
a) Tứ giác DIEH là hình gi? Vì sao?
b) Chứng minh: IH, DE, MG đồng quy
Cho hình vuông ABCD,M là điểm thuộc AB,N là điểm thuộc BC.Trên tia đối của tia AB lấy E biết AM=BN=AE=1/4AB. Gọi F là giao điềm của MC với DN. CMR:
a) Tam giác MBC đòng dạng với tam giác NCD rồi từ đó suy ra DN vuông góc CM
b) EF=DM
c) 1/ FC^2 = 1/AB^2 + 1/NC^2