Tam giác ABC vuông tại A; M là trung điểm của BC ; Lấy E sao cho M là trung điểm của AE a: Chứng minh ABEC là hcn b: Lấy E sao cho B là trung điểm của AE . Gọi I là trung điểm của BE ; Chứng minh rằng IC=Ì
Cho ABC vuông tại A. Gọi D, E, F lần lượt là trung điểm AB, AC, BC a/ Chứng minh DF // AC và cho biết tứ giác ADFC là hình gì, vì sao ? b/ Chứng minh ADFE là hình chữ nhật. So sánh AF và DE c/ Gọi K là điểm đối xứng của F qua tâm E. Chứng minh AFCK là hình thoi.
cho tam giác abc có góc a = 90° . M là trung điểm BC . D , E lần lượt là trung điểm của AB , AC . a) chứng minh tứ giác ADHE là hcn b) lấy I đối xứng D qua H . Tứ giác ADIC là hình gì ? c) lấy K đối xứng E qua H . Tứ giác AEKB là hình gì ? d) chứng minh DK // EI
1. Cho tam giác ABC , đường cao AH . Gọi I là trung điểm của AC . Lấy D là điểm đối xứng với
H qua I . Chứng minh tứ giác AHCD là hình chữ nhật.
2. Cho tam giác ABC vuông tại A, đường cao AH . Gọi I , K theo thứ tự là trung điểm của AB ,
AC . Chứng minh:
a) IHK � 90� � ; b) Chu vi �IHK bằng nửa chu vi �ABC .
3. Tìm x trong hình vẽ bên, Biết AB �13 cm, BC �15 cm, AD �10
cm.
4. Cho tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E , F , G , H theo thứ tự là
trung điểm của các cạnh AB , BC , CD, DA . Chứng minh tứ giác HEFG là hình chữ nhật.
5. Cho hình thang cân ABCD ( AB CD � , AB CD � ). Gọi M , N , P , Q lần lượt là trung điểm
các đoạn thẳng AD , BD , AC , BC .
a) Chứng minh bốn điểm M , N , P , Q thẳng hàng;
b) Chứng minh tứ giác ABPN là hình thang cân;
c) Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật.
6. Cho tam giác ABC có đường cao AI . Từ A kẻ tia Ax vuông góc với AC , từ B kẻ tia By
song song với AC . Gọi M là giao điểm của tia Ax và tia By . Nối M với trung điểm P của AB ,
đường MP cắt AC tại Q và BQ cắt AI tại H .
a) Tứ giác AMBQ là hình gì? b) Chứng minh tam giác PIQ cân.
7. Cho tam giác ABC . Gọi O là một điểm thuộc miền trong của tam giác. M ,
N , P , Q lần lượt là trung điểm của các đoạn thẳng OB , OC , AC , AB .
a) Chứng minh tứ giác MNPQ là hình bình hành;
b) Xác định vị trí của điểm O để tứ giác MNPQ là hình chữ nhật.
Cho tam giác ABC vuông tại A, điểm d thuộc cạnh BC, gọi E và F lần lượt là hình chiếu của D trên AB và AC a) Chứng minh tứ giác AEDF là hình chữ nhật b) gọi I là trung điểm của EF. Chứng minh A,I,D thẳng hàng
Cho tam giác abc có góc a = 90° , đường cao ah . Gọi E,F là trung điểm của AB và AC . Lấy gau điểm I,K lần lượt đối xứng với H qua E và F (hay E và F là trung điểm của IH và IK) . Chứng minh rằng : a) Các tứ giác AHBI và AHCK là các hình chữ nhật b) góc EHF=90° c) Ba điểm I,A,K thẳng hàng
Cho tam giác ABC vuông tại A có AB<AC.N là trung điểm BC.Gọi M,P lần lượt là hình chiếu của N trên AB,AC.Lấy E sao B là trung điểm của NE
a)chứng minh M,P lần lượt là trung điểm của AB,AC
b)tứ giác ANCE là hình gì
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC, E là điểm đối xứng của A qua M.
a) CMR: ABEC là hình chữ nhật.
b) Tam giác ABC phải có thêm điều kiện gì để ABEC là hình vuông?