Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
Cho tam giác ABCD vuông tại A và M là trung điểm của BC. Từ M kẻ MD vuông góc với AB (D thuộc AB) và ME vuông góc với AC (E thuộc AC). Chứng minh:
A) ADME là hình chữ nhật.
B) Gọi P là điểm đối xứng của D qua M. CM: DEPQ là hình thoi
Cho tam giác ABC, có AB = 16cm; BC = 20cm; AC = 12cm.
a) Chứng min : ∆ABC vuông tại A
b) Gọi M là trung điểm của BC. Kẻ MF vuông góc với AC tại F. Chứng minh : FA = FC
c) Gọi E là trung điểm của AB. Chứng minh : ME vuông góc AB và tính độ dài của ME
1/ Cho tam giác ABC vuông tại A (AB < ABC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a/ Chứng minh tứ giác AMIN là hình chữ nhật
b, Gọ D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi
c, Cho AC=20cm, AC=25cm. Tính diện tích tam giác ABC
d, Đường thẳng BN cắt DC tại K. Chứng minh rằng DK/DC = 1/3
2/ Cho tam giác ABC cân tại A, đường cao AH. Gọ M là trung điểm cảu AB, E là điểm đối xứng với H qua M.
a,Chứng minh tứ giác AHBE là hình chữ nhật
b, Chứng minh tứ giác AEHC là hình bình hành
c, Gọi N là trung điểm của AC. Chứng minh ba đường thẳng AH, CE và MN đồng quy
d,CE cắt AB tại K. Chứng minh rằng AB=3AK
cho tam giác ABC nhọn trực tâm H, M là trung điểm của BC. Qua H kẻ đường tahwngr vuông góc vs HM cắt AB,AC theo thứ tự ở E và F.
a) Trên tia đối của tia HC lấy điểm D sao cho HD=HC. chứng minh E là trực tâm tam giác BDh
b) Chứng minh: HE=HF
Cho tam giác ABC vuông cân tại A. Trên các cạnh góc vuông AB,AC lấy hai điểm D,E sao cho AD=AE. Qua D vẽ đường thẳng vuông góc với BE cắt BC ở K. Qua A vẽ đường thẳng vuông góc với BE cắt BC ở H. Gọi M là giao điểm của DK và AC
a) CM tam giác MDC cân
b) CM HK=HC
Cho tam giác ABC vuông tại A ( AB<AC), trung tuyến AM, , đường cao AH . trên tia đối của MA lấy điểm D sao cho MD=MA
a, tứ giác ABCD là hình gì ? Vì sao
b, Gọi I là điểm đối xứng của A qua B chứng minh BC song song VỚI ID
c, chứng minh tứ giác BIDC là hình thang cân
d, vẽ HE vuông góc với AB tại E và HF vuông góc với AH . Chưng minh AM vuông góc với EF
giúp mk với mk đang cần gấp
tam giác abc cân tại A. D thuộc đoạn thẳng BC, E thuộc tia đối của tia CB sao cho BD = CE. Các đường thăngr vuông góc Bc kẻ từ D và E cắt AB, AC ở M,N. I là gia của MN và BE
. a) Biết AB < BC. Chứng minh A> 60.
b) CM IM = IN.
c) CM đường thẳng vuông góc MN tại I luôn đi qua một điểm cố định khi D di động trên BC
Cho tam giác ABC có đường cao AH. Kẻ HE vuông góc vs BA tại E, kéo dài HE lấy EM = HE. Kẻ HF vuông vs AC tại F, kéo dài lấy NF sao cho NF = FH
a) Chứng minh: tam giác AME = AHE
b) C/M: AB là trung trực của HM và AC là trung trực của HN
c) C/M: tam giác AMN là tam giác cân, EFNM là hình thang
d) Gọi I là trung điểm của MN. C/M: AI vuông góc vs EF