Cho tam giác ABC có độ dài các cạnh BC=a, AC=b, AB=c thỏa mãn \(a^4+b^4+c^4=2a^2b^2+2a^2c^2\). Tìm số đo góc \(\widehat{BAC}\)
a) Cho tam giác ABC vuông tại A có 2 đường trung tuyến là AM = 6 và BN = 9. Tính AB.
b) Cho tứ giác ABCD nội tiếp đường tròn đường kính AD = 4. Tính CD với AB = BC = 1.
c) Tìm a sao cho x2 + ax + 1 = 0 và x2 - x - a = 0 có nghiệm chung.
Cho tam giác ABC vuông ở A . Tia phân giác của góc B và góc C cắt cạnh AC và AB theo thứ tự ở D và E . Từ E kẻ EK vuông góc với BC . Từ D kẻ DH vuông góc với BC ( K, H thuộc BC ) DH kéo dài cắt AB ở I. Chứng minh
a) tam giác BAD = tam giác BHD
b) BD vuông góc IC
c) Tính số đo của góc HAK
Mp xOy, tam giác ABC; BC=2AB. đường trùn tuyến xuất phát từ B d:x+y-2=0 Biết \(\widehat{ABC}=120\) và A(3;1). Tìm tọa độ B, C
Cho đường tròn tâm (O) và một điểm M nằm ngoài đường tròn. Từ M kẻ tiếp tuyến MA,MB với (O). Trên cung nhỏ AB lấy điểm C bất kì, từ C kẻ tiếp tuyến thứ ba với (O) cắt MA,MB lần lượt tại E,F. EO cắt AC tại H,FO cắt BC tại K. Qua O kẻ đường thằng song song với AB cắt MA,MB lần lượt tại P,Q
a) Chứng minh tứ giác BFCO nội tiếp
b)Chứng minh OE.OH=OF.OK và góc EOP=góc OFQ
c) Chứng minh\(EP+EQ\ge PQ\)
Cho tam giác Abc vuông tại A. Đường tròn đường kính AB cắt BC tại M. Trên cung nhỏ AM lấy điểm E ( E khác A; M).Kéo dài BE cắt AC tại F.
a) Chứng minh góc BEM = góc ACB từ đó suy ra tứ giác MEFC là tứ giác nội tiếp.
b) Gọi K là giao điểm của ME và AC. Chứng minh AK2 = KE.KM
Câu 5 ( 0,5 điểm)
Cho 2 số dương x;y có x+y=1. Tìm giá trị nhỏ nhất của biểu thức
B=(1-1/x2)(1-1/y2)
tam giác abc có;
C(0;-2)
đường cao AH : x+2y-1=0
trung điểm BN -x+y=0
tìm tọa độ A,B
cho tam giác A(1;-3), B(2;-1), C(-3;-4)
a viết phương trình đường thẳng AB
b viết phương trình đường thẳng d vuông góc với dental 3x+4y-1=0 và cách điểm b một khoảng bằng 2/5