Ta có: \(\widehat{BAD}\) = \(\widehat{DAH}\) (đối đỉnh)
\(\widehat{CAD}\) = \(\widehat{EAH}\) (đối đỉnh)
mà \(\widehat{BAD}\) = \(\widehat{CAD}\) (AD là tia pg)
=> \(\widehat{DAH}\) = \(\widehat{EAH}\)
Xét \(\Delta\)DAH và \(\Delta\)EAH có:
DA = EA (gt)
\(\widehat{DAH}\) = \(\widehat{EAH}\) (c/m trên)
AH chung
=> \(\Delta\)DAH = \(\Delta\)EAH (c.g.c)
=> \(\widehat{DHA}\) = \(\widehat{EHA}\) (2 góc t/ư)
mà \(\widehat{DHA}\) + \(\widehat{EHA}\) = 180o (kề bù)
=> \(\widehat{DHA}\) = \(\widehat{EHA}\) = \(\frac{180^o}{2}\) = 90o
hay \(\widehat{AHD}\) = 90o \(\rightarrow\) đpcm.