Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\left(\dfrac{BD}{CD}\right)^2=\left(\dfrac{3}{4}\right)^2=\dfrac{9}{16}\)
\(\Leftrightarrow HB=\dfrac{9}{16}HC\)
Ta có: HB+HC=BC
\(\Leftrightarrow HC\cdot\dfrac{25}{16}=175\)
\(\Leftrightarrow HC=112\left(cm\right)\)
\(\Leftrightarrow HB=63\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=105\left(cm\right)\\AC=140\left(cm\right)\\AH=84\left(cm\right)\end{matrix}\right.\)