A= \(\dfrac{7\sqrt{a}}{a-9}-\left(\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{\sqrt{a}-1}{\sqrt{a}+3}\right)\) ĐK:(a≥0, a≠9)
B= \(\left(\dfrac{1}{\sqrt{a}-3}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-3}\right)\) ĐK:(a≥0, a≠9)
C= \(\left(\dfrac{a\sqrt{a}}{\sqrt{a}-1}-\dfrac{a^2}{a\sqrt{a}-a}\right).\left(\dfrac{1}{a}-2\right)\) ĐK:(a>0, a≠1)
D= \(\dfrac{a\sqrt{a}+1}{a-1}-\dfrac{a-1}{\sqrt{a}+1}\) ĐK:(a≥0, a≠1)
E= \(\dfrac{a}{a-4}+\dfrac{1}{\sqrt{a}-2}+\dfrac{1}{\sqrt{a}+2}\) ĐK:(a≥0, a≠4)
Giúp mìnk với nha !!!
Rút gọn:
a, A = \(\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\) (đk: x ≥ 0 và x ≠ 36)
b, B = \(\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\) (đk: x ≥ 0 và x ≠ 9)
c, C = \(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\) (đk: a > 0, b > 0 và a ≠ b)
d, D = \(\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\) (đk: a ≥ 0, a ≠ 2, a ≠ 4)
cho biểu thức P=\(\left(1-\frac{\sqrt{x}}{1+\sqrt{x}}\right)\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
với x≥0; x≠4; x≠9
1, rút gọn P
2, tìm tất cả các giá trị nguyên của x để P<0
3, tìm GTNN của P
A= \(\left(\dfrac{a-1}{\sqrt{a}-1}-2\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+1\right)\) ĐK: (a≥0, a≠1)
B= \(\left(\dfrac{a\sqrt{a}-a}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{a+2}{a-2}\) ĐK: (a>0, a≠0, a≠2)
C= \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{a}{a-1}\right):\left(\sqrt{a}-\dfrac{\sqrt{a}}{\sqrt{a}+1}\right)\) ĐK: (a>0, a≠1)
D= \(\dfrac{a+\sqrt{a}}{\sqrt{a}}+\dfrac{a+4}{\sqrt{a}+2}\) ĐK: (a>0)
E= \(\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}+\dfrac{1-\sqrt{a}}{a+\sqrt{a}}\right)\) ĐK: (a>0, a≠1)
Tìm GTNN của A=\(\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+y\right)\left(1+\frac{1}{x}\right)\) với x;y> thỏa mãn \(x^2+y^2=1\)
cho bt với x≥0 , x≠9
P=\(\left(\frac{2\sqrt{2}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a) rút gọn
b)tìm x để P<\(-\frac{1}{3}\)
c)tìm GTNN của P
cho bt với x≥0 , x≠9
P=\(\left(\frac{2\sqrt{2}}{\sqrt{x}+3}\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a) rút gọn
b) tìm x để P<\(-\frac{1}{3}\)
c) tìm GTNN của P
Câu 1:
* Tìm GTNN của biểu thức \(Q=x-4\sqrt{2x-1}\).
Giải:
ĐK: \(x\ge\frac{1}{2}\)
Ta có : \(Q=x-4\sqrt{2x-1}\)
\(\Rightarrow2Q=2x-8\sqrt{2x-1}=\left(2x-1\right)-8\sqrt{2x-1}+16-16+1=\left(\sqrt{2x-1}-4\right)^2-15\ge-15\)
\(\Rightarrow Q\ge\frac{-15}{2}\)
Vậy MinQ=\(\frac{-15}{2}\) <=> (tự giải ra)
cho x,y là 2 số thực dương thỏa mãn đk:
\(x+\sqrt{1-x^2}=2015\left(\sqrt{1+y^2}-y\right)\).
tìm GTNN của biểu thức P=x+y