Ta có: \(2A=2.\left(2^0+2^1+2^2+2^3+......+2^{2011}\right)\) \(=2^1+2^2+2^3+2^4+.....+2^{2011}+2^{2012}\)
=> \(2A-A=\left(2^1+2^2+2^3+....+2^{2011}+2^{2012}\right)\) => \(A=2^{2012}-1\) Ta có : A = 22012 - 1 và B = 22012 => A và B là hai số nguyên liên tiếp