chứng minh bất đẳng thức a*a+b*b+2>2(a+b)
Chứng minh bất đẳng thức sau:
\(\left(2+a+b\right)\left(a+4b+ab\right)\ge18ab\) \(\left(a,b\ge0\right)\)
Chứng minh bất đẳng thức : \(a +4/(a-b)(b+1)^2\) ≥3
Sử dụng kết quả bất đẳng thức Bunyakovsky, chứng minh cosA+cosB+cosC\(\le\dfrac{3}{2}\)(A, B, C là các đỉnh của tam giác ABC).
chứng minh bất đẳng thức \(a^2+b^2\ge2ab\)
Chứng minh bất đẳng thức
a+b≤ \(2\left(a^2+b^2\right)\)
Chứng minh bất đẳng thức:
\(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\forall a,b,c\in R\)
áp dụng bất đẳng thức cô si chứng minh các bất đẳng thức:
a, (a+b+c)*(a^2+b^2+c^2)>=9abc
b,\(\left(1+a\right)\cdot\left(1+b\right)\cdot\left(1+c\right)>=\left(1+\sqrt[3]{abc}\right)^3\)
c, a^2*(1+b^2)+b^2*(1+c^2)+c^2(1+a^2)>=6abc
>=: lớn hơn hoặc bằng
Chứng minh Bất đẳng thức sau:\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)