1) Giải bất phương trình sau:
a) |1-3x|≤7
b) \(\sqrt{3x^2-2x-5}\)≤x+1
2) Bằng cách lập bảng xét dấu, giải bất phương trình:
\(\frac{\left(2x-1\right)\left(3-x\right)}{x^2-5x+4}\)>0
3) Giải phương trình
x+4-\(\sqrt{14x-1}\)=\(\frac{\sqrt{10x-9}-1}{x}\)
Giải các bất phương trình sau:
1) \(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}\le0\)
2) \(\sqrt{2x^2-6x+8}-\sqrt{x}\le x-2\)
3) \(4\left(x+1\right)^2< \left(2x+10\right)\left(1-\sqrt{3+2x}\right)\)
4) \(4\sqrt{x+1}+2\sqrt{2x+3}\le\left(x-1\right)\left(x^2-2\right)\)
giúp mình giải bpt vs
\(\dfrac{\left|2x-1\right|-x}{2x}>1;\dfrac{2-\left|x-2\right|}{x^2-1}\ge0;\dfrac{\sqrt{x+4}-2}{4-9x^2}\le0;\dfrac{x^2-2x-3}{\sqrt[3]{3x-1}+\sqrt[3]{4-5x}}\ge0;\)\(3x^2-10x+3\ge0;\left(\sqrt{2}-x\right)\left(x^2-2\right)\left(2x-4\right)< 0;\dfrac{1}{x+9}-\dfrac{1}{x}>\dfrac{1}{2};\dfrac{2}{1-2x}\le\dfrac{3}{x+1}\)
giải các bất phương trình sau
a) \(\sqrt{2x+4}-\sqrt{x}< \sqrt{x+2}\)
b)\(\left(x-5\right)\sqrt{x^2-4}\le x^2-25\)
Tìm GTNN của
a/ A=\(\dfrac{x^2-x+3}{\sqrt{1-x^3}}\) với x<1
b/ B= \(\sqrt{-x^2+4x+21}-\sqrt{-x^2+3x+10}với-2\le x\le5\)
giải bpt:
1. \(\frac{\sqrt{-3x^2+x+4}+2}{x}< 2\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
3. \(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}\le\sqrt{4x^2-18x=18}\)
4. 4(x+1)2 \(\ge\) (2x +10)( 1- \(\sqrt{3+2x}\))2
5. \(\sqrt{1+x}-\sqrt{1-x}\ge x\)
1 giải bpt \(\sqrt{6x^2-18x+12}< 3x+10-x^2\)
2 giải bpt \(\left(x-2\right)\sqrt{x^2+4}\le x^2-4\)
Giải bpt
\(\dfrac{1}{\sqrt{x^2+1}}+\dfrac{1}{\sqrt{3x^2+5}}\le\dfrac{2}{\sqrt{x^2-2}+1}\)
Giải các bất phương trình sau:
1. \(\sqrt{5x+1}-\sqrt{4x-1}< 3\sqrt{x}\)
2. \(\sqrt{x+2}-\sqrt{3-x}< \sqrt{5-2x}\)
3 \(\dfrac{\sqrt{12+x-x^2}}{x-11}\ge\dfrac{\sqrt{12+x-x^2}}{2x-9}\)
4.\(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}\le\sqrt{4x^2-18x+18}\).