\(a,\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}=\left|2-\sqrt{3}\right|+\sqrt{\left(\sqrt{3}-1\right)^2}=2-\sqrt{3}+\left|\sqrt{3}-1\right|=2-1=1\)
\(\text{[}3-\sqrt{\left(\sqrt{3}-1\right)^2}\text{]}^2+\sqrt{147}=\left(3-\sqrt{3}+1\right)^2+7\sqrt{3}=\left(4-\sqrt{3}\right)^2+7\sqrt{3}=7-8\sqrt{3}+7\sqrt{3}=7-\sqrt{3}\)
\(\frac{\sqrt{6}-\sqrt{3}}{\sqrt{2}-1}-\frac{\sqrt{10}-\sqrt{15}}{\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}}=\frac{\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-\frac{\sqrt{5}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{5}}-\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}=\sqrt{3}-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{2}=\sqrt{3}\)
a)\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
\(=2-\sqrt{3}+\left[\left(\sqrt{3}\right)^2-2\sqrt{3+1^2}\right]\)
=\(2-\sqrt{3}+3-2\sqrt{3}+1\)
=6-3\(\sqrt{3}\)
b)\(\left[3-\sqrt{\left(\sqrt{3-1}\right)^2}\right]-\sqrt{147}\)
=\(\left[3-\sqrt{3}+1\right]^2-7\sqrt{3}\)
=\(\left(2\sqrt{3}\right)^2-7\sqrt{3}\)
=12-7\(\sqrt{3}\)