ĐKXĐ: \(\left\{{}\begin{matrix}x\ge3\\x\le3\end{matrix}\right.\Leftrightarrow x=3\)
Thay x=3 vào ta thấy TM.
Vậy x=3
ĐKXĐ: x=3
Ta có: \(\sqrt{9x-27}-4\cdot\sqrt{\dfrac{x-3}{4}}=\sqrt{3-x}\)
\(\Leftrightarrow3\sqrt{x-3}-4\cdot\dfrac{\sqrt{x-3}}{2}=\sqrt{3-x}\)
\(\Leftrightarrow\sqrt{x-3}=\sqrt{3-x}\)
\(\Leftrightarrow x-3=3-x\)
\(\Leftrightarrow x-3-3+x=0\)
\(\Leftrightarrow2x-6=0\)
\(\Leftrightarrow2x=6\)
hay x=3(Thỏa ĐKXĐ)
Vậy: S={3}