\(\sqrt{9a^2\left(b^2+4-4b\right)}\)
\(=\sqrt{9a^2\left(b-2\right)^2}\)
\(=\sqrt{\left[3a\left(b-2\right)\right]^2}\)
\(=\left|3a\left(b-2\right)\right|\)
+) Xét \(3a\left(b-2\right)\ge0\)
\(\Rightarrow\left|3a\left(b-2\right)\right|=3a\left(b-2\right)\)
+) Xét \(3a\left(b-2\right)< 0\)
\(\Rightarrow\left|3a\left(b-2\right)\right|=-3a\left(b-2\right)=3a\left(2-b\right)\)
Tại \(a=-2;b=-\sqrt{3}\) ta có
\(3a\left(b-2\right)=3\cdot\left(-2\right)\cdot\left(-\sqrt{3}-2\right)=12+6\sqrt{3}>0\)
Do đó : \(\left|3a\left(b-2\right)\right|=3a\left(b-2\right)=12+6\sqrt{3}\)
Vậy....