\(\sqrt{29-12\sqrt{5}}\)
=\(\sqrt{29-2\sqrt{180}}\)
=\(\sqrt{20-2\sqrt{180}+9}\)
=\(\sqrt{\left(\sqrt{20}-3\right)^2}\)
=\(|\sqrt{20}-3|\)
=\(\sqrt{20}-3\)
=\(2\sqrt{5}-3\)
\(\sqrt{29-12\sqrt{5}}\)
=\(\sqrt{29-2\sqrt{180}}\)
=\(\sqrt{20-2\sqrt{180}+9}\)
=\(\sqrt{\left(\sqrt{20}-3\right)^2}\)
=\(|\sqrt{20}-3|\)
=\(\sqrt{20}-3\)
=\(2\sqrt{5}-3\)
rút gọn các biểu thức sau:
a,\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
b,\(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
c,\(\sqrt{2+\sqrt{5-\sqrt{13-\sqrt{48}}}}\)
d,\(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
1,\(\sqrt{49-12\sqrt{ }5}+\sqrt{49+12\sqrt{ }5}\)
2,\(\sqrt{29+12\sqrt{ }5}\)+\(\sqrt{29-12\sqrt{ }5}\)
3,\(\sqrt{31-12\sqrt{ }3}-\sqrt{31+12\sqrt{ }3}\)
4,\(\sqrt{39-12\sqrt{ }3}-\sqrt{39+12\sqrt{ }3}\)
tính :
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(\sqrt{29-12\sqrt{5}}\)
\(\sqrt{29-12\sqrt{5}}\)
Câu a :
\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
Câu b:
\(\sqrt{\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}}\)
Tính \(C=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
Tính\(D=\sqrt{6+2\sqrt{5-\sqrt{29-12\sqrt{5}}}}\)
Rút gọn biểu thức
a. \(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-\sqrt{12\sqrt{5}}}}}\)
b. \(B=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
Bài 1: Tính
a> \(\sqrt{6+2\sqrt{5}}\) + \(\sqrt{6-2\sqrt{5}}\)
b> \(\sqrt{5+2\sqrt{6}}\) + \(\sqrt{5-2\sqrt{6}}\)
c> \(\sqrt{8-2\sqrt{7}}\) - \(\sqrt{8+2\sqrt{7}}\)
d> \(\sqrt{29+12\sqrt{5}}\) + \(\sqrt{29-12\sqrt{5}}\)
e> ( \(\sqrt{0,25}\) - \(\sqrt{225}\) + \(\sqrt{2,25}\)) : \(\sqrt{169}\)
f> 3 - \(\sqrt{5}\) + 3 + \(\sqrt{5}\)