Câu a:
\( \sqrt {4 + \sqrt {5\sqrt 3 + 5\sqrt {48 - 10\sqrt {7 + 4\sqrt 3 } } } } \\ = \sqrt {4 + \sqrt {5\sqrt 3 + 5\sqrt {48 - 10\sqrt {{{\left( {2 + \sqrt 3 } \right)}^2}} } } } \\ = \sqrt {4 + \sqrt {5\sqrt 3 + 5\sqrt {48 - 20 - 10\sqrt 3 } } } \\ = \sqrt {4 + \sqrt {5\sqrt 3 + 5\sqrt {28 - 10\sqrt 3 } } } \\ = \sqrt {4 + \sqrt {5\sqrt 3 + 5\sqrt {{{\left( {5 - \sqrt 3 } \right)}^2}} } } \\ = \sqrt {4 + \sqrt {5\sqrt 3 + 25 - 5\sqrt 3 } } \\ = \sqrt {4 + \sqrt {25} } = \sqrt {4 + 5} = \sqrt 9 = 3 \)
Câu b:
\( \sqrt {\sqrt {5 - \sqrt {3 - \sqrt {29 - 12\sqrt 5 } } } } \\ = \sqrt {\sqrt 5 - \sqrt {3 - \sqrt {{{\left( {2\sqrt 5 } \right)}^2} - 2.2\sqrt 5 .3 + {3^2}} } } \\ = \sqrt {\sqrt 5 - \sqrt {3 - \sqrt {{{\left( {2\sqrt 5 - 3} \right)}^2}} } } \\ = \sqrt {\sqrt 5 - \sqrt {3 - \left| {2\sqrt 5 - 3} \right|} } \\ = \sqrt {\sqrt 5 - \sqrt {3 - \left( {2\sqrt 5 - 3} \right)} } \\ = \sqrt {\sqrt 5 - \sqrt {3 - 2\sqrt 5 + 3} } \\ = \sqrt {\sqrt 5 - \sqrt {{{\left( {\sqrt 5 - 1} \right)}^2}} } \\ = \sqrt {\sqrt 5 - \sqrt 5 + 1} = \sqrt 1 = 1 \)