ta có:
\(\sqrt{250.4,9}+\sqrt{2,5.360}\)
=35+30=65
\(\sqrt{250.4,9}+\sqrt{2,5}.\sqrt{360}=\sqrt{25.49}+\sqrt{2,5.360}=\sqrt{25.49}+\sqrt{25.36}=\sqrt{25}.\sqrt{49}+\sqrt{25}.\sqrt{36}=5.7+5.6=35+30=65\)
ta có:
\(\sqrt{250.4,9}+\sqrt{2,5.360}\)
=35+30=65
\(\sqrt{250.4,9}+\sqrt{2,5}.\sqrt{360}=\sqrt{25.49}+\sqrt{2,5.360}=\sqrt{25.49}+\sqrt{25.36}=\sqrt{25}.\sqrt{49}+\sqrt{25}.\sqrt{36}=5.7+5.6=35+30=65\)
tính
a) \(\sqrt{25.16}\)
b)\(\sqrt{12,1.250}\)
c)\(\sqrt{0,4}.\sqrt{8,1}.\sqrt{1600}\)
d)\(\sqrt{2,7}.\sqrt{3}.\sqrt{360}\)
e)\(\sqrt{20,8^2-19,2^2}\)
f)\(\sqrt{13^2-12^2}\)
g)\(\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}\)
h)\(\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}\)
i) \(2\sqrt{3}.\left(\sqrt{3-1}\right)+\left(1+\sqrt{3}\right)^2-2\sqrt{6}\)
k) \(\sqrt{2-\sqrt{2}}.\sqrt{2+\sqrt{2}}\sqrt{8}\)
l) \(\left(\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}\right)^2\)
Tính
a) \(\sqrt{ }\)0,1.\(\sqrt{ }\)4000
b) \(\sqrt{ }\)9/196
c) \(\sqrt{ }\)16.\(\sqrt{ }\)36 -\(\sqrt{ }\)125:\(\sqrt{ }\)0,01
d) (\(\sqrt{ }\)112 - \(\sqrt{ }\)63 + \(\sqrt{ }\)7) : \(\sqrt{ }\)7
e) \(\sqrt{ }\)2,5 . \(\sqrt{ }\)30 . \(\sqrt{ }\)48
\(\sqrt{97,5^2-2,5^2+15^2-85^2}\)
tính
\(\sqrt{97,5^2-2,5^2+15^2-85^2}\)
Tính ;
a) \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}.}\sqrt{2-\sqrt{2+\sqrt{2}}}\)
b) \(\sqrt{47+\sqrt{5}}.\sqrt{7-\sqrt{2+\sqrt{5}}}.\sqrt{7+\sqrt{2+\sqrt{5}}}\)
c) \(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
d) \(\sqrt{31+\sqrt{2}}.\sqrt{6+\sqrt{5+\sqrt{2}}}\sqrt{3+\sqrt{3+\sqrt{5+\sqrt{2}}}}.\sqrt{3-\sqrt{3+\sqrt{5+\sqrt{2}}}}\)
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(\sqrt{2+\sqrt{2}}.\sqrt{3+\sqrt{7+\sqrt{2}}}.\sqrt{3+\sqrt{6+\sqrt{7+\sqrt{2}}}}.\sqrt{3-\sqrt{6+\sqrt{7+\sqrt{2}}}}\)
\(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2^6\right)}\)
rút gọn:giải chi tiết hộ mình nha
D = \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
C = \(\dfrac{2\sqrt{4-\sqrt{5+\sqrt{21+\sqrt{80}}}}}{\sqrt{10}-\sqrt{2}}\)
F = \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
B = \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{n-1}+\sqrt{n}}\)
E = \(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
Tính:
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)