\(\sqrt{97,5^2-2,5^2+15^2-85^2}\)
\(=\sqrt{\left(97,5+2,5\right)\left(97,5-2,5\right)-\left(15+85\right)\left(85-15\right)}\)
\(=\sqrt{95.100-70.100}=\sqrt{25.100}\)
\(=\sqrt{25}\sqrt{100}=5.10=50\)
\(\sqrt{97,5^2-2,5^2+15^2-85^2}\)
\(=\sqrt{\left(97,5+2,5\right)\left(97,5-2,5\right)-\left(15+85\right)\left(85-15\right)}\)
\(=\sqrt{95.100-70.100}=\sqrt{25.100}\)
\(=\sqrt{25}\sqrt{100}=5.10=50\)
\(\sqrt{97,5^2-2,5^2+15^2-85^2}\)
Cho \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a) Tìm x để A=1
b) Tính A với \(x=4-2\sqrt{3}\)
c) Tìm x để 5A nguyên
Tính
\(A=\sqrt{20}-3\sqrt{8}+5\sqrt{45}\)
\(B=\dfrac{30}{\sqrt{7}-1}+\dfrac{15}{\sqrt{7}+2}\)
\(C=\left(3-\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\left(3+\dfrac{5+\sqrt{5}}{\sqrt{5}+1}\right)\)
\(D=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(E=\sqrt{7-4\sqrt{3}}-\sqrt{3+2\sqrt{3}}\)
Thu gọn B= \(21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{5}\)
Thu gọn A= \(\left(2-\sqrt{3}\right)\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)
Tính giá trị các biểu thức:
a.\(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\sqrt{3}\)
b.\(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
c.\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)3\sqrt{6}\)
d.\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
rút gọn B
B=\(\sqrt{8+2\sqrt{15}-2\sqrt{5}-2\sqrt{3}}\)-\(\sqrt{8-2\sqrt{15}-2\sqrt{5}+2\sqrt{3}}\)
chứng minh \(\sqrt{8-2\sqrt{15}-\sqrt{8+2\sqrt{15}}}=-2\sqrt{3}\)
rút gọn
\(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{15}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
chứng minh
\(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=-2\sqrt{3}\)