Bài 1:
ĐKXĐ: $-2\leq x\leq 2$
Đặt $\sqrt{2-x}=a; \sqrt{2+x}=b(a,b\geq 0)$
Ta có: \(\left\{\begin{matrix} a+b+ab=2\\ a^2+b^2=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=2-ab\\ (a+b)^2-2ab=4\end{matrix}\right.\)
\(\Rightarrow (2-ab)^2-2ab=4\)
\(\Leftrightarrow (ab)^2-6ab=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=6\end{matrix}\right.\)
Nếu $ab=0\Rightarrow a+b=2$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-2X=0\Rightarrow (a,b)=(0,2); (2,0)$
$\Rightarrow x=2$
Nếu $ab=6\Rightarrow a+b=-4$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2+4X+6=0$ (pt này vô nghiệm)
Vậy $x=2$
Bài 2:
ĐK: $x\geq \frac{-1}{3}
PT \(\Leftrightarrow \sqrt{5x+7}=\sqrt{x+3}+\sqrt{3x+1}\)
\(\Rightarrow 5x+7=4x+4+2\sqrt{(x+3)(3x+1)}\)
\(\Leftrightarrow x+3=2\sqrt{(x+3)(3x+1)}\)
\(\Leftrightarrow \sqrt{x+3}(\sqrt{x+3}-2\sqrt{3x+1})=0\)
Vì $x\geq \frac{-1}{3}$ nên $\sqrt{x+3}\neq 0$
Do đó $\sqrt{x+3}-2\sqrt{3x+1}=0$
$\Rightarrow x+3=4(3x+1)$
$\Rightarrow x=-\frac{1}{11}$ (thỏa mãn)
Vậy..........
Bài 3:
Lấy PT(1) trừ PT(2):
\(3(x-y)=(y^2-x^2)+(y-x)\)
\(\Leftrightarrow 4(x-y)+(x-y)(x+y)=0\)
\(\Leftrightarrow (x-y)(x+y+4)=0\Rightarrow \left[\begin{matrix} x=y\\ x+y+4=0\end{matrix}\right.\)
Nếu $x=y$ thì $3x=x^2+x+1$
$\Leftrightarrow x^2-2x+1=0\Leftrightarrow (x-1)^2=0$
$\Rightarrow x=1\Rightarrow y=1$
Nếu $x+y+4=0\Rightarrow x+y=-4$
Lấy PT(1) cộng PT(2) suy ra:
$x^2+y^2+2=2(x+y)$
$\Leftrightarrow (x+y)^2-2xy+2=2(x+y)$
$\Leftrightarrow (-4)^2-2xy+2=2(-4)$
$\Rightarrow xy=13$
Áp dụng định lý Vi-et đảo thì $x,y$ là nghiệm của PT: $X^2+4X+13=0$ (pt vô nghiệm nên loại)
Vậy.........
Bài 2:
ĐK: $x\geq \frac{-1}{3}
PT \(\Leftrightarrow \sqrt{5x+7}=\sqrt{x+3}+\sqrt{3x+1}\)
\(\Rightarrow 5x+7=4x+4+2\sqrt{(x+3)(3x+1)}\)
\(\Leftrightarrow x+3=2\sqrt{(x+3)(3x+1)}\)
\(\Leftrightarrow \sqrt{x+3}(\sqrt{x+3}-2\sqrt{3x+1})=0\)
Vì $x\geq \frac{-1}{3}$ nên $\sqrt{x+3}\neq 0$
Do đó $\sqrt{x+3}-2\sqrt{3x+1}=0$
$\Rightarrow x+3=4(3x+1)$
$\Rightarrow x=-\frac{1}{11}$ (thỏa mãn)
Vậy..........